Future change in ocean productivity: Is the Arctic the new Atlantic?
نویسندگان
چکیده
One of the most characteristic features in ocean productivity is the North Atlantic spring bloom. Responding to seasonal increases in irradiance and stratification, surface phytopopulations rise significantly, a pattern that visibly tracks poleward into summer. While blooms also occur in the Arctic Ocean, they are constrained by the sea-ice and strong vertical stratification that characterize this region. However, Arctic sea-ice is currently declining, and forecasts suggest this may lead to completely ice-free summers by the mid-21st century. Such change may open the Arctic up to Atlantic-style spring blooms, and do so at the same time as Atlantic productivity is threatened by climate change-driven ocean stratification. Here we use low and high-resolution instances of a coupled ocean-biogeochemistry model, NEMO-MEDUSA, to investigate productivity. Drivers of present-day patterns are identified, and changes in these across a climate change scenario (IPCC RCP 8.5) are analyzed. We find a globally significant decline in North Atlantic productivity (> 220%) by 2100, and a correspondingly significant rise in the Arctic (> 150%). However, rather than the future Arctic coming to resemble the current Atlantic, both regions are instead transitioning to a common, low nutrient regime. The North Pacific provides a counterexample where nutrients remain high and productivity increases with elevated temperature. These responses to climate change in the Atlantic and Arctic are common between model resolutions, suggesting an independence from resolution for key impacts. However, some responses, such as those in the North Pacific, differ between the simulations, suggesting the reverse and supporting the drive to more fine-scale resolutions.
منابع مشابه
Arctic climatechange and its impacts on the ecology of the North Atlantic.
Arctic climate change from the Paleocene epoch to the present is reconstructed with the objective of assessing its recent and future impacts on the ecology of the North Atlantic. A recurring theme in Earth's paleoclimate record is the importance of the Arctic atmosphere, ocean, and cryosphere in regulating global climate on a variety of spatial and temporal scales. A second recurring theme in t...
متن کاملContributions of Atlantic Ocean to June-August Rainfall over Uganda and Western Kenya
This study investigates the contributions of Atlantic Ocean to June-August rainfall over Uganda and western Kenya (KU). The study has utilized the datasets including precipitation from the Global Precipitation Climatology Centre, North Atlantic Oscillation Index (NAOI), South Atlantic Ocean Dipole Index (SAODI), ERA-interim reanalysis, and the Atlantic Ocean Sea Surface Temperature (SST). Singu...
متن کاملForum for Arctic Modeling and Observational Synthesis (FAMOS): Past, current, and future activities
The overall goal of the Forum for Arctic Modeling and Observing Synthesis (FAMOS) community activities reported in this special issue is to enhance understanding of processes and mechanisms driving Arctic Ocean marine and sea ice changes, and the consequences of those changes especially in biogeochemical and ecosystem studies. Major 2013–2015 FAMOS accomplishments to date are: identification of...
متن کاملLong term ocean simulations in FESOM: Evaluation and application in studying the impact of Greenland Ice Sheet melting
The Finite Element Sea-ice Ocean Model (FESOM) is formulated on unstructured meshes and offers geometrical flexibility which is difficult to achieve on traditional structured grids. In this work the performance of FESOM in the North Atlantic and Arctic Ocean on large time scales is evaluated in a hindcast experiment. A water-hosing experiment is also conducted to study the model sensitivity to ...
متن کاملNorth Atlantic Deep Water formation inhibits high Arctic contamination by continental perfluorooctane sulfonate discharges
Perfluorooctane sulfonate (PFOS) is an aliphatic fluorinated compound with eight carbon atoms that is extremely persistent in the environment and can adversely affect human and ecological health. The stability, low reactivity, and high water solubility of PFOS combined with the North American phaseout in production around the year 2000 make it a potentially useful new tracer for ocean circulati...
متن کامل